Anodic Oxidation and Amperometric Sensing of Hydrazine at a Glassy Carbon Electrode Modified with Cobalt (II) Phthalocyanine–cobalt (II) Tetraphenylporphyrin (CoPc-(CoTPP)4) Supramolecular Complex
نویسنده
چکیده
This paper describes the electrocatalytic behaviour of a glassy carbon electrode (GCE) modified with cobalt(II)phthalocyanine (CoPc) complex peripherally tetrasubstituted with cobalt(II)tetraphenylporphyrin (CoTPP) complexes via ether linkages (i.e., CoPc-(CoTPP)4). The features of the immobilised pentamer were interrogated with cyclic voltammetry and electrochemical impedance spectroscopy (EIS) using [Fe(CN)6] as redox probe revealed enhanced electron transfer properties with kapp ≈ 18 x 10 cms compared to that of the bare GCE (4.7 x 10 cms). The viability of this supramolecular complex as a redox mediator for the anodic oxidation and sensitive amperometric determination of hydrazine in alkaline conditions is described. The electrocatalytic oxidation of hydrazine by GCE-CoPc-(CoTPP)4 was characterised with satisfactory catalytic current response with low non-Faradaic current (ca. 30 times lower than the bare GCE) and at much lower oxidation potential (ca. 300 mV lower than the bare GCE). A mechanism for the studied electrocatalytic reaction was proposed based on the spectrophotometric evidence that revealed the major involvement of the Co/Co redox couple of the central CoPc species rather than the CoTPP component of the pentamer. Rate constant for the anodic oxidation of hydrazine was estimated from chronoamperometry as ~ 3x10 Ms. The proposed amperometric sensor displayed excellent charateristics towards the determination of hydrazine in 0.2 M NaOH ; such as low overpotentials (+100 mV vs Ag|AgCl), very fast amperometric response time (1 s), linear concentration range of up to 230 μM, with micromolar detection limit, high sensitivity and stability.
منابع مشابه
Scanning tunneling microscopy study of the structure and orbital-mediated tunneling spectra of cobalt(II) phthalocyanine and cobalt(II) tetraphenylporphyrin on au(111): mixed composition films.
Binary thin films of cobalt(II) phthalocyanine (CoPc) and cobalt(II) tetraphenylporphyrin (CoTPP) were prepared at submonolayer coverage on Au(111)/mica substrates byvapor deposition. All sample preparation and analysis were done under an ultrahigh vacuum. Scanning tunneling microscopy (STM) constant-current images of CoPc/CoTPP mixtures showed two close-packed surface structures, with differen...
متن کاملFlow-Injection Amperometric Determination of Ascorbic Acid Using a Graphite-Epoxy Composite Electrode Modified with Cobalt Phthalocyanine
A flow injection method is reported for the determination of ascorbic acid based on amperometric detection, using a cobalt(II) phthalocyanine (CoPc) modified graphite-epoxy electrode. The amperometric respons was evaluated with regard to pH, ionic strength of the electrolyte, flow rate of the carrier solution, injected sample volume and conditioning time of the electrode. The limit of detec...
متن کاملVoltammetric Detection of Dopamine and Ascorbic Acid Using a Multi-Walled Carbon Nanotubes/Schiff Base Complex of Cobalt-Modified Glassy Carbon Electrode
The surface of the glassy carbon electrode (GCE) is modified with the composite of new Cobalt complex with a tetradentate Schiff base ligand derived from 3-ethoxysalicylaldehyde and 4,5-dimethyl orthophenylenediamine (CoOEtSal) and multi-walled carbon nanotube (MWCNT). The electrochemical oxidation of ascorbic acid (AA) and dopamine (DA) at the modified electrode was studied using the cyclic an...
متن کاملCobalt Phthalocyanine Modified Electrodes Utilised in Electroanalysis: Nano-Structured Modified Electrodes vs. Bulk Modified Screen-Printed Electrodes
Cobalt phthalocyanine (CoPC) compounds have been reported to provide electrocatalytic performances towards a substantial number of analytes. In these configurations, electrodes are typically constructed via drop casting the CoPC onto a supporting electrode substrate, while in other cases the CoPC complex is incorporated within the ink of a screen-printed sensor, providing a one-shot economical ...
متن کاملCOBALT PHTHALOCYANINE MODIFIED CARBON PASTE ELECTRODE AS A POTENTIOMETRIC SENSOR FOR DETERMINATION OF ASCORBIC ACID
A carbon Paste electrode modified with cobalt (II) phthalocyanine (CoPC) was used as a sensitive potentiometric sensor for determination of ascorbic acid in aqueous solutions. The potential response of the electrode is a linear function of ascorbic acid concentration over the range 5 10 to 10 M (?1- 1800 µg ML ) with a Nernstian slope of 56 mV at pH 7. The limit of detection was 0.2 µg ...
متن کامل